

External Cost Values to be Applied in the EE IO Framework of EXIOPOL

Wolf Müller, Philipp Preiss, Rainer Friedrich

Institute of Energy Economics and the Rational Use of Energy (IER), University of Stuttgart 15 September 2011, Berne

Impact Pathway Approach (<u>www.ExternE.info</u>, EcoSense, NEEDS-Project)

In EXIOPOL: Classification of Sectors According to Spatial Characteristics

- In EU-Project EXIOPOL spatial characteristics have been identified for 130 sectors by
 - i. defining the share of total emissions released at different stack heights
 - ii. defining the share of emissions released in urban and rural areas for each of the stack heights

	transport / traffic		low stack		medium stack		high stack			
industry type name					< 20m		20 <x<100m< th=""><th>>100m</th></x<100m<>		>100m	
	thereof:			thereof:			thereof:			
	share	urban	rural	share	urban	rural	share	urban	rural	share
Manufacture of cement,										
lime and plaster				20%	80%	20%	20%	80%	20%	60%
Production of electricity by										
coal										100%
Other land transport	100%	33%	67%							
Research and development				100%	90%	10%				

Estimation Damage Cost Values for

• 41 airborne pollutants, including

- i. Classical air pollutants (SO₂, NO_X, NMVOC, NH₃, CO, PM_{2.5}, PM_{coarse}),
- ii. heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn),
- iii. greenhouse gases (CH₄, CO₂ and N₂O) and
- iv. Dioxins, POPs, Pesticides, HCH, PCP, PAH, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyren, Paraffin's

• 43 Countries

- i. EU-27 Member States,
- ii. 4 European countries: Norway, Switzerland, Russia, Turkey
- iii. 12 non-EU countries: Australia, Brazil, Canada, China, India, Indonesia, Japan, Mexico, South Africa, South Korea, Taiwan and USA

• 130 Sectors

covering all parts of economic activities in the countries

Wolf Müller

Monetary values for medium stack height in EU-27

Thank you very much for your attention!

Links

• EXIOPOL project

http://www.feem-project.net/exiopol/

• NEEDS project

http://www.needs-project.org/

ExternE project series

http://www.externe.info/

Contact:

wolf.mueller@ier.uni-stuttgart.de

Wolf Müller

NEEDS recommend: WTP for Reduction of Health Risks

Health end-points	Euro2000 per case / per YOLL				
Core Endpoints					
Increased mortality risk (infants)	3,000,000				
New cases of chronic bronchitis	200,000				
Increased mortality risk - YOLLacute	60,000				
Life expectancy reduction - YOLLchronic	40,000				
Respiratory hospital admissions	2,000				
Cardiac hospital admissions	2,000				
Work loss days (WLD)	295				
netto Restricted activity days (netRADs)	130				
Minor restricted activity days (MRAD)	38				
Lower respiratory symptoms	38				
LRS excluding cough	38				
Cough days	38				
Medication use / bronchodilator use	1				

http://www.needs-project.org/

Estimation of monetary damage factors

EcoSenseWeb model

- i. The model is based on the Impact Pathway Approach
- ii. Integrated computer system developed within the ExternE project series with last updates in the EU-project NEEDS
- iii. Assessment of the impacts on human health, crops yield loss, damage to building materials, loss of biodiversity and climate change caused by emissions to air
- iv. Chemical transport modelling based on source receptor matrices (SRM) from MET.NO
- v. http://ecosenseweb.ier.uni-stuttgart.de

Deriving Damage Cost Values per Unit Emission

• Application of EcoSenseWeb model

- i. Estimations include classical airborne pollutants such as NO_X , SO_2 , NH_3 , NMVOC and primary particles ($PM_{2.5}$ and PM_{10})
- ii. Country-specific external cost values for EU-27 Member States plus NO, TR, RU, CH in Euro/Tonne which differ between:
 - 1. levels of stack height
 - 2. emissions in urban or rural areas for each country (for primary PM)
- For other pollutants: Application of LCIA data from IMPACT2002+
 - i. No differentiation between levels of stack heights or geographical location
 - ii. For the monetary valuation the following values have been derived in NEEDS

Impact	Ecosystem Quality	Human Health
Euros	0.47 € ₂₀₀₀ / PDF	40,000 € ₂₀₀₀ / DALY

Example: Monetised damages of Primary PM2.5 emissions from cement production in Germany

• Total emissions of PM2.5 in 2000: 2,613.54 t (EEA data)

		ow stack	(medium stack			high stack
charac	< 20m			20 <x<100m< th=""><th>>100m</th></x<100m<>			>100m
Shares	total			total			
	share	urban	rural	share	urban	rural	total share
Manufacture of cement	20%	80%	_ 20%	20%	80%	20%	60%

Emissions of PM2.5	I	ow stacl < 20m	٢	medium stack 20 <x<100m< th=""><th>high stack >100m</th></x<100m<>			high stack >100m
(111.1)	total	urban	rural	total	urban	rural	total
Manufacture of cement	522.71	418.17	104.54	522.71	418.17	104.54	1,568.12

€ ₂₀₀₀ /tonne	low s (3-2	stack 0m)	medium (20-10	high stack (<100m)	
Germany	rural	urban	rural	urban	
PM2.5	41,964.00	91,481.52	41,964.00	43,222.92	21,899.00

Total external costs: <u>99,443,683</u> €₂₀₀₀

Damage Cost Values Outside Europe: PPP weighting

 For non-EU countries: same fate & effect factor but adjustment via national purchasing power parities (PPP in 2000)

